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ABSTRACT 

We color the vertices of a graph G, so that no two adjacent vertices have the 

same color. We would like to do this as cheaply as possible. An efficient coloring would 

be very helpful in optimization models, with applications to bin packing, examination 

timetable construction, and resource allocations, among others. Graph coloring with 

the minimum number of colors is in general an NP-complete problem. However, there 

are several classes of graphs for which coloring is a polynomial-time problem. One 

such class is the chordal graphs. This thesis deals with an experimental algorithm 

to approximate the chromatic number of an input graph G. We first find a maximal 

edge-induced chordal subgraph H of G. We then use a completion procedure to add 

edges to H, so that the chordality is maintained, until the missing edges from G are 

restored to create a chordal supergraph S. The supergraph S can then be colored 

using the greedy approach in polynomial time. The graph G now inherits the coloring 

of the supergraph S. 



VI 



DISCLAIMER 

The computer programs in the Appendices are supplied on an "as is" basis, 
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I.        INTRODUCTION 

Large-scale scheduling and timetable problems arise in many activities, from 

crew scheduling on airlines to scheduling of classroom periods and teachers at Uni- 

versities to register allocations in a computer CPU. These are often modeled as graph 

coloring problems that are then subjected to a variety of strategies for solution by 

computer. For example, consider the storage problem at military ammunition supply 

points, where certain types of ammunition cannot be stored in the same bunkers. 

What is the minimum number of bunkers needed at an ammunition supply point to 

ensure the safe storage of all types of ammunition? We use a graph-theoretic model to 

formulate this problem. We construct a graph G, with vertices representing ammuni- 

tion types and where the existence of edges between vertices represents their pairwise 

incompatibilities. This problem reduces to that of finding an optimal coloring of the 

vertices of G. These types of optimization models have applications in bin packing, 

examination timetable construction, and resource allocations. Unfortunately there 

is no known algorithm for this problem which will predictably provide an optimal 

solution in a reasonable time. 

A.     DEFINITIONS 
The graph terminology used in this thesis can be found in most textbooks on 

graph theory. For undefined terms and notation see Bondy and Murty [Ref. 1], or 

West [Ref. 2]. 

1.      Undirected Graph 
A simple undirected graph G = (V, E) consists of a vertex set V(G) = {vx,..., vn} 

and an edge set E(G) = {ei,...,em}, where each edge is an unordered pair of ver- 

tices (see part (a), Figure 1). We use uv to denote the edge {u,v}. When we have 

uv e E(G), then we say that "u is adjacent to u" and "u is adjacent to u".   The 

vertices of an edge e are its endpoints.   If the endpoints are the same this edge is 



G-(V.E) G=(V,E) GA=(V,E') 
n=5t m=7 E=(ab,bc,ce,de) A=(b,c,d,e) 

Figure 1. (a) Undirected graph G of order n and size m, (b) A subgraph H with edge 
set Et, (c) An induced subgraph with vertex set A. 

considered a loop. In a graph G, a list of vertices [v0, v1,v2,..., vt] is a path of length / 

from vertex v0 to v, if {u,-_i, t>,-} € E(G), for alH = 1,2,...,/. A path is called closed 

if v0 = vi. A cycle is a simple closed path of distinct vertices. A graph G is connected 

if between any two vertices there exists a path in G joining them. The neighborhood 

of v is the set of adjacent vertices Adj (v) and is denoted N(v). We consider only 

connected, loopless, finite graphs without multiple (redundant) edges. 

2. Miscellaneous Graphs 
The order of a graph G, denoted |V|, is the number of vertices in G. We use 

\E\to denote the number of edges, or the size of G. The complete graph of order n is 

denoted Kn (see part (c), Figure 2), and is an undirected graph in which every pair 

of vertices is adjacent. The complement of a graph G is the graph G = (V, E), where 

~E = {(x,y) eV\x^y and (x,y) $ E} (see part (b), Figure 2). A subgraph of G is a 

graph H, such that E(H) C E(G), V(H)CV (G)(see part (b), Figure 1). If A C V, 

the A-induced subgraph of G is the graph GA, such that E (GA) = {^2/ € # (C) k € 

V {GA) and y G V (GA)} (see part (c), Figure 1). 

3. Graph Parameters 
For the following definitions let G = (V, E) be an undirected graph. A coloring 

of a graph is an assignment of "colors" to the set of vertices V so that adjacent 

vertices have different colors. The symbol x{G) denotes the smallest number of colors 



b    d«^ i \ T?*b    d 

G=(V,E) G=(V,E) K5 

Figure 2.   (a) Undirected graph G, (b) Complement graph G with edge set E, (c) 

Complete graph K5. 

required and is called the chromatic number of the graph G( see figure4). A subset 

V (H) C V(G), with \H\ = q, is a q-clique if it induces a complete subgraph Kq. 

A clique # is maximal if there is no clique of G which properly contains H as a 

subset and H is maximum if no other clique in G has a larger order. The number of 

vertices in a maximum clique of G is called the clique number of G, and is denoted 

u (G). An independent set S C V(G) is a set of vertices in which no two vertices are 

adjacent. The number of vertices in a independent set of maximum order is called 

the independence number of G, denoted a iß). A subset K C V (G) such that if 

xy e E (G), then x £ K or y € #, is called a uertez cower. A vertex cover for G is a 

set of vertices that is collectively incident to all the edges in E(G). The vertex cover 

number of G is the number of vertices in the minimum vertex cover, denoted ß (G). 

4.      Chordal Graphs 
A graph G is chordal (or triangulated) if it does not contain any cycle of length 

greater than three as an induced subgraph[Ref. 3]. An ordering of the vertex set V, 

with n = \V\, is {v0, vx, v2,..., vn}. A vertex v is simplicial in G if N (v) is a complete 

subgraph. If 5 is an ordering of V such that each Vi is a simplicial vertex of the induced 

subgraph <?„;,...,„„, then it is called a perfect elimination ordering (see Figure 4). A 

successor of u,- with respect to the ordering 8 is a vertex Vj € iV(u;), where i < j, 

and is denoted Suc(vi)[Ref. 4]. A chordal graph G is of the class of perfect graphs, 



in which u {GA) = x {GA) for all A C V (G). The class of perfect graphs have been 

extensively researched since the 1960's by well-known mathematicians. Golumbic's 

book "Algorithmic Graph Theory and Perfect Graphs" [Ref. 3] does an excellent 

job in explaining the difficult practical problems related to the structure of perfect 

graphs. 

5.      NP-Complete Problems 
The class of problems with complexity bounded by a polynomial in the size 

of the input is denoted P. We consider a problem solvable in polynomial time by 

a deterministic algorithm as being tractable. That is, for each input of size n the 

worst-case running time is 0(nk) for some constant k. We define problems that 

require superpolynomial time as being intractable. 

The class NP contains those decision problems that are "solvable" by a non- 

deterministic polynomial-time algorithm. Such an algorithm, in a sense, tries all 

possibilities simultaneously, applying polynomial-time computation to each guess in 

parallel. This type of algorithm should not be confused with a parallel implementation 

of a deterministic algorithm. If any of the computations results in a yes or possibly a 

no, then the algorithm is a success. The algorithm is successful if it works, even if the 

answer to the current decision problem is negative. The non-determinism concerns 

the multiplicity of paths, and not whether the search is successful. It is easy to see 

that if we can do many computation paths in parallel and one of these is completed 

in polynomial time, then we can do that one alone in polynomial time.  Therefore 

P C NP. 

Most mathematicians believe that the classes P and NP are different classes, 

although it has not yet been proven that P ^ NP. The class P, loosely, consists of 

those problems that can be solved quickly, while the class NP consists of problems 

for which a solution can be verified quickly. We define a problem X as NP-hard if 

every problem instance in NP can be reduced to an instance of X in polynomial 

time. A problem is NP-complete if it is in NP and is NP hard.  We now have the 



class of P in the class of NP, but the problems that are AT-complete are also in 

NP, so a problem in P is probably not TVP-complete. Since no one has come up with 

a polynomial algorithm for a iVP-complete problem, thus proving that P = NP, 

we can assume the intractability of iVP-complete problems. Problems that on the 

surface seem no harder than sorting, graph searching, or network flow are in fact 

JVP-complete. Thus, it is important to become familiar with this class of problems. 

For a detailed discussion of iVP-completeness see Cormen, Leiserson, and Rivest[Ref. 

5] or Garey and Johnson[Ref. 6]. 





II.        EXISTING ALGORITHMS 

Ore's book "The Four-color Problem" [Ref. 7] shows that considerable litera- 

ture in the field of graph theory deals with the coloring of graphs. Many algorithms 

exist for graph coloring, but there are only a few fundamentally different approaches 

to the problem. Finding the exact chromatic number of a graph is a NP-complete 

problem, so it is no surprise that no fast algorithm exists. We will explain two such 

algorithms and it should then be obvious to the reader why they are impractical. 

A.     EXACT ALGORITHMS 
1.      Brute-Force Coloring 
The different ways to color a graph are not unique. There may be several 

proper colorings of graph G using x{G) colors. There also exist many improper 

colorings of that same graph. How many different colorings of G are there? A 

coloring of the n vertices in V using a palette P of order k is a mapping / : V -> P. 

If we use all of P, the mapping is onto. Then there are . 

(*)*"-(fc-i)<*-iJ-+G-2)(*-2>"+-+f-i>t-,(i)1" 
different colorings, and if k > x{G) one or more of these colorings is proper. We could 

easily program a computer to produce these colorings and for each, check to see if 

the coloring is proper. But the cost of computation would be exorbitant. Using the 

formula above we see that the number of colorings gets outrageous very quickly. For 

example, let re = 10, then if k = 2 there are 1022 different colorings. If k = 3 there are 

55,977 colorings and if k = 4 there are 818,521 different colorings. If we wanted to 

color a large graph in this way, say n — 100, and k = 2 there are 1.267 * 103Odifferent 

colorings. 



2.      Greedy-Backtracking Coloring 

Given G, this algorithm finds x(G) if given a starting palette of fewer than 

x(G) colors. It performs an extensive routine of trying to color the graph with the 

palette given, and if it determines that the palette is not large enough then another 

color is added to the palette. Eventually enough colors appear on the palette to 

successfully color the graph. 

The most significant problem with this algorithm is to determine the starting 

number of colors k. If k is too low, the algorithm consumes too much time backtrack- 

ing and recoloring the graph and if k is greater than x then algorithm will greedily 

color the graph with the available colors k and the resulting coloring may not be op- 

timal. The clique number u (G) is clearly a lower bound on x(G), since the vertices 

of the largest complete subgraph of G must all have separate colors. In small graphs, 

u (G) is very close to x(G), but in larger graphs the difference can grow significantly, 

as is shown in the next section. 

B.     APPROXIMATION ALGORITHMS 

Several algorithms exist to approximate the chromatic number of an arbitrary 

graph. Some are better than others. Most of these algorithms deal with finding the 

largest independent set of vertices or the vertices of a maximal clique. To find the 

largest independent set is a NP-complete problem, but to find a large one can be done 

in polynomial time. 

1.      Independent Sets 
The approximation algorithm for the independent set problem is based on two 

assumptions: (1) a vertex of high degree is harder to color than a vertex of low degree; 

(2) coloring many vertices with the same color is good. Recall that a(G) = w(G) is 

the order of a largest independent set of the vertices in G. Clearly the vertices in 

an independent set can be colored with the same color, therefore x(G) < n/a(G), 

where n = \V\. In small graphs, n/a{G) tends to be smaller than u (G), but in larger 



graphs n/a(G) is a much closer lower bound to xiß). 

Let /(n, p) = E (a) be a function to find the expected value a(G) for a random 

graph G of order n and edge probability p. With this information we can estimate x- 

In principle we can find an independent set of order E (a), and delete it. Now we have 

a graph of order n - /(n,p) = nx. We continue on the same way until E (a) = 0 and 

thus x(n,p) = i + x{m-f(m,P),P) > n/a(G), for i = 0,1,2,.... Note: u{G) = 5(G) 

for graphs with edge probability p = .5 and in particular x(1000,.5) = 85, but 

5(1000, .5) = 15 and n/5(1000,.5) = 67. This points out a very peculiar problem 

with graphs of large order and density. That is to say, u(G) is a very poor estimator 

while n/a(G) is a good estimator of x(G) for graphs of large order and density. 

2.      Vertex Covers 
In a graph G, if a set A C V (G) is a vertex cover then there are no edges 

in A~, an independent set. Thus any minimum vertex cover is the complement of 

a maximum independent set, and so a(G) + ß (G) = n, where n is the order of 

G. The vertices in a minimum vertex cover are the only vertices considered in the 

coloring problem; all other vertices are part of the independent set and require only 

one additional color. Therefore ß (G) + I > x(G). Another upper bound on x{G) 

that is worth considering is A (G) + 1. Both errors can be relatively large, though. 

The vertex cover problem is known to be iVP-complete (see Cormen[Ref. 5]). 

Nevertheless, there exist good algorithms to find a vertex cover that is near optimal. 

One such algorithm uses a set C, initially empty, and a set E containing the edges of 

a graph G. We pick an arbitrary edge xy € E and add the vertices x and y to C, then 

delete any edges in E covered by x or y. We pick another edge in E and continue 

this procedure until E is empty. The computational complexity of this algorithm is 

0 (m), where m is the size of G. The vertex cover produced by this algorithm is C, 

which is at most twice the size of the optimal cover C*. Let A be the set of arbitrary 

edges picked in the algorithm. No two edges in A share an endpoint, since all incident 

edges to the endpoints are deleted before the next edge is picked.  Therefore when 



two vertices are added to C, \C\ = 2 \A\. Any vertex cover of A must contain at 

least one endpoint of each edge in A. Since no two edges in A share an endpoint, no 

vertex in the cover is incident on more than one edge in A. Therefore, \A\ < \C*\, 

and |C| = 2|A|<2|C*|. 

3. Maximum Clique 
This algorithm, by Balas and Yu [Ref. 8], is a chordal subgraph approach for 

finding the maximum clique problem. It has two main subroutines. The first algo- 

rithm generates a maximal triangulated induced subgraph H of an arbitrary graph G 

in a computational complexity of O (n + m). The second finds the minimum color- 

ing of H, using the cardinality k of the maximum clique; then appends vertices to H 

while maintaining its chromatic number, until the resulting graph becomes a maximal 

fc-chromatic induced subgraph F of G. If F = G, we are done, since the maximum 

clique in H was also maximum in G. Otherwise we branch to subproblems consider- 

ing any clique larger than the current one must contain one of the vertices in V(G) 

but not in V (F). We now apply the same procedure above on the new subproblems, 

each defined on a vertex set contained in the neighbor set of v € V (G) /V (F). For 

the results of this algorithm and the different variations applied to it see Balas and 

Yu[Ref. 8]. 

4. Minimal Weighted Coloring of Chordal Subgraphs 

The algorithm in the previous section was modified by Balas and Xue [Ref. 9] 

to find the minimum weighted clique and thus a coloring of a chordal subgraph H of 

G. They then extended the algorithm to include an ordering r of the vertices V\H. 

This ordering r is used to add remaining vertices to the correct color class until a 

maximal induced subgraph F with the same minimum weighted coloring of H results. 

The final step is to modify the branching rules described by Balas and Yu [Ref. 8] to 

include the minimum weighted coloring and define the subproblems to reapply in the 

algorithm until it finds the maximum weighted clique. 

10 



5.      Edge-Maximal Chordal Subgraph 
The algorithm by Xue [Ref. 4] involves n iterations. Each iteration augments 

the partial perfect elimination ordering and adds a vertex, together with some edges, 

to the partial chordal subgraph. What sets this algorithm apart from algorithms 

like that of Dearing et al.[Ref. 10] are the way in which it chooses the next vertex 

to add into the partial chordal subgraph, and the way in which it chooses the first 

successor of a given vertex. We use a greedy approach in both instances. During an 

iteration, we call the vertices in the partial perfect elimination ordering labeled and 

the rest unlabeled. Let U be the set of unlabeled vertices and H = (V(H),E(H)) 

be the partial chordal subgraph. For every unlabeled vertex v G U, we assign v 

a temporary first successor t(v) and a label s (u), where t (v) G V(H). The label 

s (v) = 1 + |TV (v) n SUCH (t (v))\ is the maximum number of edges that can be added 

into H if v is added into H next with t (v) being its first successor. We initially set 

t{v) = 0, no temporary first successor and s (v) = 0, Vt> € V. We choose the next 

vertex v G U to label and add to H such that 5 (v) = max{s(u)|u G U}. Ties go to 

the vertex v with the largest degree. We add all the edges to t(v) or to a vertex in 

SUCH (t {v)): We update t (u), s (u) : For all u G iV (u) n U, let ru be the number of 

neighbors of u in H that are either v or a successor of v. If ru < s (u), set v as the 

temporary first successor of u and update s (u), i.e., let ru = 1 + \SUCH (V) 0 N (u)\. 

If ru > s (u), set t (u) = v, s (u) = ru. 

11 



12 



III.        A SUPERGRAPH HEURISTIC 

The basic idea is, given G, to find S, a minimum cardinality chordal supergraph 

of G. We could then color S, and let G inherit the result. What makes this a topic 

worthy of research is the fact that the first step is iVP-complete. We get around this 

by finding a minimal chordal supergraph of G, ideally containing as few edges of G 

as possible. 

In this chapter we introduce and explain an experimental scheme for coloring 

an arbitrary graph. We have developed a basic algorithm which will be modified in an 

attempt to improve its performance. Each experiment consists of the generation of 100 

random graphs of order 7 to 20, to which the algorithm is applied. An implementation 

in the MATLAB programing language is given in the Appendices for all functions 

whose names appear here in the verbatim typeface. 

A.     THE IDEAL ALGORITHM 
The ideal supergraph algorithm for the coloring an arbitrarygraph G consists 

of finding the closest edge-induced chordal supergraph S of G. We color S with a 

simple greedy coloring algorithm, capitalizing on the perfect ordering of the chordal 

graph S, and then let G inherit the coloring. At a minimum we have x (S) > x(G) and 

if only a few inconsequential edges were induced to find S then possibly x (S) = x{G)- 

The following algorithm depicts the ideal coloring algorithm. 

Ideal Algorithm 
Input: Graph G 
Ouput: Optimal coloring of a minimal chordal supergraph S 

begin 
S := minimum edge-induced supergraph of G; 
7 := coloring of S; 
H inherits the coloring 7; 

end; 

13 
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Figure 3. The Ideal Algorithm starts with an arbitrary graph G, computes a maximal 
chordal subgraph H, and then builds a supergraph S while minimizing p. (/? = QJ) 

The problem with this algorithm is that of finding the chordal supergraph S. 

We propose, as depicted in Figure 3, to find a maximal chordal subgraph H of G and 

then find a chordal supergraph S minimizing the number of edges p. 

B.     THE BASIC ALGORITHM 
This algorithm, implemented in the function project 1 .m, is the basis for the 

improved algorithms which follow. Generally speaking, it produces a random graph, 

ensures the graph is connected, and computes its chromatic number (see figure 4). It 

then finds a maximal chordal subgraph of the random graph and a minimal chordal 

supergraph of both graphs.   Lastly it computes the relative difference between the 

14 



G: 3,b    4,r 

/7- <*5,b 

H: 7,b    6,r 

-^5,b 

S: 
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X (G) = 2 X(H)- 2 X (S) = 3 

Figure 4. The Basic Algorithm starts with an arbitrary graph G, computes a maximal 
chordal subgraph H, and then builds a supergraph 5*. Graphs H and S vertices are 
in the perfect elimination ordering 8. 

chromatic numbers of the supergraph and the original graph. 

1. Random Graph Generation 
The basic Algorithm A, step 1, generates a random input graph G = (V, E) 

of order n and size m, with vertices labeled as v\,..., vn. A random sparse adjacency 

matrix is generated by the function unigraph.m and is used to represent the undi- 

rected graph G. An edge in G exists between the vertices u,- and VJ, represented by a 

1 in the (i,j) entry of the adjacency matrix, with probability p, where 0 < p < 1. 

2. Test for Connectedness 
The function to ensure that a graph is connected uses a depth-first search 

algorithm and has computational complexity of 0(n + m) as discussed in Roberts 

[Ref. 11, page 445]. For a detailed discussion of depth-first search see Tarjan [Ref. 

12]. Since a graph of order n has at most (™) edges, we have 0(n2) steps. In this 

function each time we traverse down a path to the end and return to the beginning 

without visiting every vertex in the graph we identify a connected component of the 

graph. When a disconnected graph is discovered we discard the graph and return to 

step one. 

The function connect.m starts with a list v containing the initial vertex v\ 

and visits each vertex using depth-first search. At each vertex u; there are three 

possibilities: (1) there are adjacent vertices which have not been added to the list of 

vertices v, in which case we pick the lowest-indexed vertex, add it to the list u, delete 
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the edge and continue the search from the new vertex; (2) there are adjacent vertices, 

but all of them appear in the list v, thus we delete all the edges and backtrack on the 

list v until we find an adjacent vertex and continue the search; or (3) there are no 

adjacent vertices, in which case we backtrack on the list v as described in case two. 

If in the process of backtracking to find an adjacent vertex we end up at the initial 

vertex v1 and \v\ ^ n, then we have found a connected component in a disconnected 

graph. 

3.      Maximal Chordal Subgraph Computation 

A maximal chordal subgraph H of the input graph G is computed in step 

two of the basic algorithm. H is found by using an algorithm of Dearing, Shier and 

Warner [Ref. 10]. This is a polynomial algorithm used in optimization problems to 

solve large systems of linear equations. The algorithm has worst-case time complexity 

<9(mA), where A denotes the maximum vertex degree in G. The mchord.m function 

is given a starting vertex vx and the sparse adjacency matrix for <?, and produces 

a list of vertices denoting a perfect elimination ordering and a list of edges for the 

maximal chordal subgraph found. 

The function mchord. m generates a perfect elimination ordering list v, starting 

with the first vertex given. It maintains a list s of all the vertices of G not in v and 

a list E of all the edges in the maximal chordal subgraph. It also builds an incidence 

matrix N of order nxn containing a 1 in the (i,j) entry if vertex i is adjacent to 

vertex j when both vertices have been considered in the maximal chordal subgraph. 

The matrix iV is initialized to all zeros and list E is empty at the beginning of the 

procedure. The next step in the mchord.m function is to generate a loop to visit each 

vertex in graph G. The current vertex is denoted v0. Step one in the loop is to find 

all the vertices adjacent to v0, using a function adj .m. 

The function adj .m is given the adjacency matrix G and a vertex v0. The 

function determines the vertices adjacent to v0 by examining the tth row, representing 

v0, of the matrix G and returning the indices of all columns j which include a 1 in 
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the (i,j) position. The function returns a list u of column indices representing the 

adjacent vertices and a list E of edges incident to v0. 

For each vertex u that is adjacent to the current vertex uo, if N(u) C N(v0) 

then N(u) := N(u) U {v0} and E := E U {u, v0}. In other words, if the neighborhood 

of u is a subset of the neighborhood of v0 we increment the value for the vertex u in 

the set N and add the edge to E. At this time we eliminate the edges which have 

been added to the subgraph from the adjacency matrix G, so that they will not be 

considered again later. 

From the set N we choose the vertex with the largest value to become our new 

v0 and we add it to the list of v and eliminate it from the list of s. Now we repeat the 

procedure until all the vertices in G are added to the list v. The result is the reversal 

of a perfect elimination ordering of G. 

4. Missing Edges 

The functions mkadjmat.m and mkedges.m are used to derive an adjacency 

matrix from a list of edges and to create a list of edges from an adjacency matrix, 

respectively. When we subtract the adjacency matrix H from the adjacency matrix 

G, we produce an adjacency matrix F representing the edges of G missing from H. 

The list of missing edges is denoted em = ({vi,Vj}\vi is adjacent to Vj and Vi,Vj £ F). 

Anytime we reorder the vertices of H we must translate the list of missing edges era 

into the new ordering using the function trans.m. 

5. Maximum Clique 

The clique number u(H) = x{H), since H is a chordal Perfect graph. It 

is trivial that x(H) ^ x(@)- Therefore, we use u(H) as a lower bound on x(G), 

because it is the easiest to find. The algorithm to find the maximum clique of a 

chordal graph by Gavril [Ref. 13], has a computational complexity of 0(n + m). We 

use this algorithm in the function mclique.m to determine the OJ{H). We maintain 

a list S which holds the number of times the lowest-indexed vertex was a member 
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of a previous clique. As we visit each vertex in the perfect elimination ordering we 

determine its neighbors and store them in x. If x = 0 then the current vertex has no 

neighbors and it is its own maximal clique. If x ^ 0 then we only need to consider the 

neighbors of higher index in the perfect elimination ordering since all vertices of lower 

order would have been eliminated and not considered in finding the next maximal 

clique. We store these vertices in X. We now update the value in S for the smallest- 

indexed vertex u in X by S(u) = max{5(u), \X\ - 1}. If the number in S of the 

current vertex is less than the current maximal clique, we output the maximal clique 

X and update the maximal clique number if the current maximal clique is larger. If 

the number in S is equal to or greater than current clique number, then the maximal 

clique has already been identified and we continue. In layman's terms, we visit each 

vertex in the perfect elimination ordering, cutting off the portion of the graph we just 

visited. We then look forward, relative to the ordering, and determine the maximal 

clique. If it is larger than the current clique number we update the clique number 

and move on until we reach the end of the perfect elimination ordering. 

6.      Greedy-Backtracking Coloring Scheme 

The greedy-backtracking coloring scheme uses an algorithm defined by Bender 

and Wilf in [Ref. 14]. They give a detailed analysis of the run-time complexity of 

this algorithm on arbitrary graphs. The idea is to visit each vertex in the order given 

and determine which of its neighbors have been colored. We always start with the 

cheapest (or lowest) color and, having greedily colored the first k vertices, find the 

cheapest available to color the current {k + l)st vertex. This algorithm must be given 

a palette of available colors, and if in visiting a current vertex we run out of available 

colors, we simply backtrack to the last vertex colored and determine if it is possible 

to increase the color to a (the next highest). If it is possible to increase the color we 

do and continue our search. If it is not possible we must backtrack further, erasing 

the current coloring scheme until we find a vertex color which can be increased. If 

in the backtracking process we return to the initial vertex, then we did not supply a 
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sufficient number of colors in the palette. In this case we must increase the number of 

colors available on the palette and try the procedure again. The algorithm terminates 

with a coloring that uses the least number of colors necessary for an proper coloring 

scheme of the graph. This least number of colors is of course x(Gf). 

7. Maximum Cardinality Search 

The vertices of chordal subgraph H are ordered in the original perfect elim- 

ination ordering returned by the mchord.m function and, consequently, most of the 

missing edges are at the front of the ordering. It would be more beneficial for our 

algorithm to have the missing edges towards the back of the ordering, since these are 

the vertices considered early in the edge completion scheme. We use the maximum 

cardinality search (MCS) algorithm described in Tarjan[Ref. 15], to reorder the ver- 

tices of the subgraph H into a new perfect elimination ordering. The computational 

complexity of this algorithm is 0{n + m). The function mcs .m uses a list x of size | V| 

representing each of the vertices, which is initially set to zeros. Each time a vertex 

visited all of its neighbors the value on list x is increased by one. We use the vertex 

with the highest number on the list x as our next vertex to visit. We add this vertex 

to the list v and then continue the search. The algorithm terminates when all the 

vertices have been added to v. The list v represents the perfect elimination ordering 

of H. This new ordering ends with the first vertex of the old perfect elimination 

ordering, and is still a perfect elimination ordering since the subgraph H is chordal. 

8. Edge Completion 
We now use a procedure first described by Grone, Johnson, et al in [Ref. 16] to 

perform a edge completion sequence on the chordal graph until all missing edges have 

been reinserted. This results in a supergraph of the input graph. The computational 

complexity of this procedure is 0(n2). In the function complete.m we start at the 

last vertex in the perfect elimination ordering and connect it to the remaining vertices 

starting with the next highest. Each time an edge in added to the graph we check to 
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see if it is on the list of missing edges. If it is on the list of missing edges we eliminate 

it from the list and continue the procedure until the list is empty. 

9.      Greedy Coloring 
Finally we perform a procedure on the chordal supergraph to determine its 

chromatic number with the function grcolor .m. This function takes advantage of the 

input chordal graph in a perfect elimination ordering. Since S is a perfectly orderable 

graph, applying the greedy coloring algorithm produces an optimal coloring of the 

graph in 0(n). Each vertex is colored using the cheapest available color until all have 

been colored. 

C.     IMPROVED ALGORITHMS 
With these improved algorithms we want to reduce the relative difference in 

the chromatic numbers of the original arbitrary graph and the chordal supergraph. 

First we experiment with manipulations on the arbitrary graph and then we examine 

some special ordering of the chordal graphs. 

1. Vertex Sort Algorithm 
This variation is based on the assumption that a better perfect elimination 

ordering is produced for the subgraph H when the vertices of G are pre-sorted by 

degree, highest first. This perfect elimination ordering might facilitate the selection of 

the supergraph S that would minimize the amount of added edges. In this variation we 

sort the vertices of the arbitrary graph G with the function versort .m. The vertices 

with the highest degree are considered first in the function mchord.m. Thus, the 

resulting maximal chordal subgraph H has an improved perfect elimination ordering. 

This algorithm is incorporated in the function project2.m. 

2. Missing Edge Algorithm 
This variation presupposes that a better perfect elimination ordering is used on 

the maximal chordal subgraph H if the vertices of H are presorted so that the vertices 
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with the most missing edges are considered first in the edge completion algorithm. 

The resulting supergraph S should contain the minimal number of unnecessary edges. 

D.     COMPUTATIONAL COMPLEXITY 

The most time-consuming function in this algorithm is the greedy-backtracking 

coloring function gbcolor.m, which is an inefficient non-polynomial time algorithm. 

All other functions in these algorithms run in polynomial time (see Table I). The 

inefficiency of gbcolor.m has limited us to graphs of order 20 or less. We presume 

another limiting factor in this algorithm is the programming language MATLAB. 

MATLAB Function Worstcase Run-time 

unigraphl.m 0{n2) 
connect1.m 0(n + m) 
mchord.m O(mA) 
mclique.m 0(n + m) 
gbcolor.m non-polynomial time 
mcs.m 0(n + m) 
complete.m 0(n2) 
grcolor.m 0(n) 

Table I. Computational Complexity. 

21 



22 



IV.        EXPERIMENTAL RESULTS 

The algorithms in chapter III were implemented in MATLAB and tested on 

100 random graphs of various densities (where density is the probability of an edge 

existing between any two vertices), having an order of 7 to 20. The projects were run 

on a HP700/15 workstation. Table II summarizes the results. The results are stated 

in the framework of the relative error between computing the actually chromatic 

number of the graph G and the chromatic number of the chordal supergraph S. 

A.     GRAPH ORDER 
As can be seen from Table II and Figures 5 - 7, relative error increases with 

the order of the graph. Problem difficulty for our algorithms increases as well, which 

is not peculiar to our approach, but is intrinsic to the nature of the problem. Graphs 

Basic Algorithm 
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4- 
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i?   3 
"5 
o 

"J2.5 
CD > 
I 
CD 
cc    2 

1.5 

0.5 
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p = .1 : solid 
p = .2 : dotted 
p = .3 : dashed 
p = .4 : dash dot 
p = .5 : circles 

12 14 
Graph Order: |V| 

Figure 5. Relative error of x versus graph order. Note: This is discrete data. Relative 
error has been represented by continuous lines for clarity only. 
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Figure 6. Relative error of x versus graph order. Note: This is discrete data. Relative 
error has been represented by continuous lines for clarity only. 

of large order tend to be harder to color due to the increased complexity of the graph. 

We are limited to graphs of order 20 due to the excessive use of computer time. The 

computation time of the function gbcolor.m to compute the exact x(G)in graphs 

larger than order 20 was too excessive. The Missing Edge algorithm shows promise 

because the relative error is less than the other two algorithms even in the higher 

orders. On the other hand, the Vertex Sort algorithm does not perform as well in 

the lower orders as the other two algorithms, and does not show promise for further 

research. The Basic algorithm was used in this circumstance to provide a basis to the 

improved algorithms. 

B.     GRAPH DENSITY 
The density of the graph is derived from the probability p that a given edge 

occurs.   As can be seen from Table II and Figures 5 - 7, the density of the graph 
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Figure 7. Relative error of x versus graph order. Note: This is discrete data. Relative 
error has been represented by continuous lines for clarity only. 

has a peculiar effect on the performance of all the algorithms. The edge probability 

p = .2 produces the largest error in all three algorithms at the higher order, and this 

error appears to be increasing faster than when other probabilities are used. There 

appears to be a peculiarity in the relative error of x for graphs with edge probability 

between .1 and .3. Further research on the structure of random graphs with these edge 

probabilities is required to shed some light on this peculiarity. Again, the Vertex Sort 

algorithm shows little promise since the characteristics of Figure 6 shows no distinct 

pattern of the.relative error in x for different probabilities p. The Missing Edge 

algorithm shows promise especially in the probabilities p = .1 and p — .5. 

C.     CONCLUSION 
In conclusion, we see that we have moved the NP-complete problem from the 

coloring of an arbitrary graph to the choice of the correct maximal chordal subgraph 
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with the perfect elimination order which will produce the minimum chordal super- 

graph of the arbitrary graph. If it were possible to choose this maximal chordal 

subgraph accurately the relative error of x would be. 
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Relative Error in x Relative Error in x 
V I    p Proj 1    Proj 2    Proj 3    | V \     p     Proj 1    Proj 2    Proj 3 

14 7 .1 0.7567 1.4967 0.3550 
.2 0.7250 1.2533 0.3483 

.3 0.6417 1.0400 0.3367 

.4 0.6775 0.9167 0.3800 

.5 0.5567 0.7528 0.3458 
8 .1 0.8233 1.5050 0.3300  15 

.2 0.8525 1.3633 0.3142 

.3 0.8733 1.3425 0.4817 

.4 0.9392 1.1808 0.5958 

.5 0.7720 1.0157 0.5190 
9 .1 1.1317 2.5350 0.3783  16 

.2 0.9533 2.9117 0.5317 

.3 1.0950 2.8927 0.5250 

.4 1.0377 2.2727 0.6973 

.5 0.9182 1.9313 0.7360 

10 .1 1.1633 1.9267 0.4233  17 
.2 1.1608 1.7025 0.6500 
.3 1.2358 1.6183 0.8433 
.4 1.3308 1.5033 1.0408 
.5 1.2335 1.2707 1.0678 

11 .1 1.3250 2.0375 0.4250  18 
.2 1.4575 2.0517 0.8692 

.3 1.5475 1.9000 1.1250 

.4 1.4802 1.5835 1.1617 

.5 1.4372 1.5022 1.3178 

12 .1 1.5400 1.9325 0.5767  19 
.2 1.7483 2.1683 1.0833 
.3 1.9792 2.2050 1.5350 
.4 1.7282 1.8432 1.5872 
.5 1.5663 1.6390 1.4885 

13 .1 1.6842 2.1600 0.6083  20 
.2 2.0250 2.3608 1.3875 
.3 2.0990 2.2798 1.8528 
.4 1.9398 2.0550 1.7923 
.5 1.6952 1.7450 1.5998 

.1 2.1717 2.4967 0.7867 

.2 2.2308 2.6592 1.6900 

.3 2.3817 2.5975 2.1550 

.4 2.0807 2.1505 1.9615 

.5 1.8233 1.8813 1.7347 

.1 2.0600 2.5350 1.0317 

.2 2.4900 2.9117 1.9367 

.3 2.5752 2.8927 2.4152 

.4 2.1815 2.2727 2.0757 

.5 1.8322 1.9313 1.7913 

.1 2.4067 2.8142 1.1417 

.2 2.9792 3.2125 2.5150 

.3 2.8463 2.9962 2.6250 

.4 2.4402 2.4803 2.3655 

.5 2.0250 2.1163 1.9518 

.1 2.3400 3.2717 1.6533 

.2 3.2992 3.6250 2.8958 

.3 2.9123 3.0895 2.7620 

.4 2.4982 2.5863 2.4300 

.5 2.1265 2.1827 2.0468 

.1 2.3292 3.1825 1.6767 

.2 3.6058 3.7708 3.0058 

.3 3.0758 3.1702 2.9245 

.4 2.6853 2.7108 2.6468 

.5 2.1828 2.2433 2.1255 

.1 3.2308 3.7942 2.2975 

.2 3.6065 4.0438 3.2207 

.3 3.2637 3.4208 3.1165 

.4 2.7017 2.7897 2.6507 

.5 2.1265 2.3386 2.2340 

.1 3.1625 3.8025 2.3800 

.2 4.1508 4.2950 3.8142 

.3 3.4603 3.5655 3.3695 

.4 2.8642 2.9357 2.7575 

.5 2.1828 2.5000 2.3759 

Table II. Experimental Results of the Supergraph Heuristic. 
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V.        FURTHER RESEARCH 

We have given a new approach to coloring an arbitrary graph with the use of 

a supergraph heuristic. With higher order graphs the relative error of the estimate 

is larger than anticipated, however the procedure for computing the estimate is a 

polynomial-time algorithm. The Edge Sort preprocessing algorithm shows promise 

of improving the relative error of the estimate and should be further studied for 

continued improvement. The main area for further research will be in the choice of 

the maximal chordal subgraph which will produce the minimum chordal supergraph. 

If this choice can be performed accurately our relative error would be next to nothing. 

It follows from the work of Grone, Johnson, et al. that if G' is any chordal 

supergraph of G, and if His the chordal subgraph of G produced by Maxchord or 

some related algorithm, then there exist a chordal completion sequence containing 

both H and G'. Finding such a sequence would be ideal. Since the algorithm for 

generating such sequences is completely driven by perfect elimination orderings, our 

problem reduces to that of finding an optimal perfect elimination ordering for H. 

Further study is required in the analysis of the relative error of the estimate 

for the data in Table II and for larger graphs. To acquire data from larger graphs 

we must compile our programs into a more efficient programing language, possibly 

UNIX C. 
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APPENDIX A. PROGRAM FOR BASIC 
ALGORITHM 

'/, Loren Eggen Project #1 revised 30 May 97 

p=.l; '/,  probability of edge present 

fid=fopen(,Results2/projectl.out','a'); 

fprintf(fid,'Project #l\n'); 
fprintf (fid,'Edge probability in Arbitrary Graph is:'/,4. lf\n',p) ; 

fprintf (fid, ' Matrix Ave. Chromatic Numbers ElapsedW); 

fprintf(fid,' Size   Actual New  Error     Time\n'); 

fclose(fid); 
for i=7:20 

M=[]; 
k=0; 
t=clock; 
while k < 100; 
v=D; 
while length(v) ~-  i 

G=unigraphl(i,p); 
[v,e]=connectl(G,l); 

end; 
[vl,el]=mchord(G,l); 
H=mkadjmat(el,i); 
F=G-H; 
em=mkedges(F); clear F; 
if "isempty(em); 
Hl=H(vl,vl); clear H; 
eml=trans(vl,em); 
cl=mclique(Hl); 
vcl=gbcolor(G,cl); 

ac=max(vcl); clear G; 
v2=mcs(Hl,l); 
H2=Hl(v2,v2); clear HI; 
em2=trans(v2,eml); 
S=complete(H2,em2); 

c2=mclique(S); clear H2; 
v=fliplr(l:length(S)); 
vc2=grcolor(S(v,v),c2); 

nc=max(vc2); clear S; 
M=[M;i ac nc (nc-ac)/ac] ; 

'/, order of arbitrary graph G 
'/, initialize storage matrix 
'/, initialize k 
'/, start clock 
'/, generate k graphs 
'/, initialize v 
'/, loop for undirected connected graph 
'/, generate a random undirected graph G 

'/, check if G is connected 

'/, end while 
*/, find the maximal chordal subgraph H 
'/, make adjancency matrix for H 
'/, determine missing edges 
'/, make a list of missing edges 
'/, if the original graph was not chordal 
'/, reorder vertices of H to mchord peo-order 
•/, translate missing edges to new order 
*/, maximum clique of HI, lower bound of G 
'/, color G using greedy-backtracking coloring 

•/, chromatic number for G 
'/, find peo ordering using max. card, search 
'/, reorder vertices HI to mcs peo-order 
'/, translate missing edges to new order 
•/, complete H2 until missing edges are added 

y, maximum clique of S 
•/, reverse the ordering of S 
'/, color S using greedy coloring 
'/, chromatic number for S 
'/, record results 
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k=k+l; 
end; 

end; 
[n,m]=size(M); 
aac=sum(M(:,2))/n; 
anc=sum(M(:,3))/n; 
adc=sum(M(:,4))/n; 
tim=etime(clock,t)/60; 

'/, increment k 
'/. end if 
'/, end while 
'/, size of M 
7,  average actual chormatic number 
'/, average new chormatic number 
*/, average relative error 
'/, elapsed time 

fid=fopen('Results2/projectl.l.out','a'); 
fprintf (fid,' Edge probability in Arbitrary Graph is:'/,4. If \n' ,p); 
fprintf (fid,' Matrix   Chromatic NumbersW) ; 
fprintf(fid,' Size   Actual New  Error\n'); 
fprintf(fid,"/.5.0f '/.7.0f '/.7.0f 7,7.4f\n' ,M') ; 
fprintf (fid,'Average :'/,5. Of */.7.0f °/.7.4f \n',aac,anc,adc); 

fclose(fid); 
fid=fopen('Results2/projectl.out','a'); 
fprintf(fid,"/.5.0f '/.7.0f '/.7.0f '/.7.4f 7.8. If \n' ,i,aac,anc,adc,tim); 

fclose(fid); 
end; '/« end for 
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APPENDIX B. PROGRAM FOR THE 
VERTEX SORT ALGORITHM 

7,  Loren Eggen Project #2 revised 30 May 97 

p=.l; '/,  probability of edge present 

fid=fopen('Results2/project2.out','a'); 

fprintf(fid,'Project #2\n;); 
fprintf (fid,'Edge probability in Arbitrary Graph is:'/,4. lf\n' ,p) ; 

fprintf (fid,' Matrix Ave. Chromatic Numbers ElapsedW); 

fprintf(fid,' Size   Actual New  Error     Time\n'); 

fclose(fid); 

for i=7:20 

M=[]; 

k=0; 

t=clock; 

while k < 100 

v=[]; 

while length(v) ~= i 

G=unigraphl(i,p); 

[v,e]=connect1(G,1); 

end; 

[Gl,v]=versort(G); 

[vl,el]=mchord(Gl,l); 

H=mkadj mat ( e 1, i ) ; 

F=G1-H; clear Gl; 

em=mkedges(F); clear F; 

if "isempty(em); 

Hl=H(vl,vl); clear H; 

eml=trans(vl,em); 

cl=mclique(Hl); 

vcl=gbcolor(G,cl); 

ac=max(vcl); clear G; 

v2=mcs(Hl,l); 

H2=Hl(v2,v2); clear HI; 

em2=trans(v2,eml); 

S=complete(H2,em2); 

c2=mclique(S); clear H2; 

v3=fliplr(l:length(S)); 

vc2=grcolor(S(v3,v3),c2); 

nc=max(vc2); clear S; 

order of arbitrary graph G 

initialize storage matrix 

initialize k 

start clock 

number of graphs to generate 

initialize v 

loop for undirected connected graph 

generate a random undirected graph G 

check if G is connected 

end while 

sort the vertices by highest degree 

find the maximal chordal subgraph H 

make adjancency matrix for H 

determine missing edges 

make a list of missing edges 

if the original graph was not chordal 

reorder vertices of H to mchord peo-order 

translate missing edges to new order 

maximum clique of HI, lower bound of G 

color G using greedy-backtracking coloring 

chromatic number for G 

find peo ordering using max. card, search 

reorder vertices HI to mcs peo-order 

translate missing edges to new order 

complete H2 until missing edges are added 

maximum clique of S 

reverse the ordering of S 

color S using greedy coloring 

chromatic number for S 
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M=[M;i ac nc  (nc- -ac)/ac] ; 

k=k+l; 
end; 

end; 
[n,m]=size CM); 
aac=sum(M( ,2))/n; 
anc=sum(M( :,3))/n; 
adc=sum(M( :,4))/n; 

'/, record results 
'/, increment k 
7. end if 
'/, end while 
°/, average actual chormatic number 
'/, average new chormatic number 
'/, average relative error 
•/, average relative error 

tim=etime(clock,t)/60; '/. elapsed time 
fid=fopen('Results2/project2.1.out;,'a'); 
fprintf (fid,'Edge probability in Arbitrary Graph is:*/,4.1f\nJ ,p); 

fprintf (fid,' Matrix   Chromatic NumbersW ); 
fprintf (fid,' Size   Actual New  ErrorW); 

fprintf(fid,J,/.5.0f y.7.0f %7.Of °/.7.4f\n' ,MJ) ; 
fprintf (fid,' Average :'/,5. Of '/.7.0f '/,7.4f\n' ,aac,anc,adc) ; 

fclose(fid); 
fid=fopen('Results2/project2.out','a'); 
fprintf(fid,"/.5.0f */.7.0f 7,7 .Of  '/.7.4f 7,8. lf\n' ,i,aac,anc,adc,tim) ; 

fclose(fid); 
end; '/. end for 
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APPENDIX C. PROGRAM FOR MISSING 
EDGE ALGORITHM 

'/, Loren Eggen Project #3 revised 30 May 97 

p=.l; '/, probability of edge present 

fid=fopen(,Results2/project3.out','a'); 

fprintf(fid,'Project #3\n'); 
fprintf (fid,'Edge probability in Arbitrary Graph is :'/,4. If \n',p); 

fprintf(fid,' Matrix Ave. Chromatic Numbers Elapsed\n'); 

fprintf(fid,' Size   Actual New  Error     Time\n'); 

fclose(fid); 
for i=7:20 

M=[]; 
k=0; 
t=clock; 
while k < 100 

v=D; 
while length(v) ~= i 

G=unigraphl(i,p); 
[v,e]=connectl(G,l) ; 

end; 
[vl,el]=mchord(G,l) ; 

H=mkadjmat(el,i); 

F=G-H; 
em=mkedges(F); clear F; 

if ~isempty(em); 
Hl=H(vl,vl); clear H; 
eml=trans(vl,em); 
cl=mclique(Hl); 
vcl=gbcolor(G,cl); 

ac=max(vcl); 

Gl=G(vl,vl); clear G; 

F1=G1-H1; clear Gl; 
[y,vs]=sort(sum(Fl)) ; 
v2=fliplr(vs); clear Fl; 

H2=Hl(v2,v2); clear HI; 
em2=trans(v2,eml); 

v3=mcs(H2,l); 
H3=H2(v3,v3); clear H2; 
em3=trans(v3,em2); 

'/, order of arbitrary graph G 
'/, initialize storage matrix 
'/, initialize k 

'/, start clock 
'/, number of graphs to generate 

'/, initialize v 
'/, loop for undirected connected graph 
'/, generate a random undirected graph G 

'/, check if G is connected 

'/, end while 
•/, find the maximal chordal subgraph H 

'/, make adjancency matrix for H 
'/, determine missing edges 
'/, make a list of missing edges 
'/, if the original graph was not chordal 
'/, reorder vertices of H to mchord peo-order 
•/, translate missing edges to new order 
'/, maximum clique of HI, lower bound of G 
'/, color G using greedy-backtracking coloring 

*/, chromatic number for G 
•/, translate G into HI ordering 

•/, find the max. edges missing 

'/, sort by max. edges missing 
'/, descending order 
•/, sort HI max. edges missing first 
*/, translate missing edges to new order 
'/, find peo ordering using max. card, search 
*/, reorder vertices HI to mcs peo-order 

•/, translate missing edges to new order 
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S=complete(H3,em3); 

c2=mclique(S); clear H3; 
v4=fliplr(l:length(S)); 
vc2=grcolor(S(v4,v4),c2) ; 

nc=max(vc2); clear S; 
M=[M;i ac nc (nc-ac)/ac]; 

k=k+l; 
end; 

end; 
[n,m]=size(M); 

aac=sum(M( 

anc=sum(M( 

adc=sum(M( 

,2))/n; 

,3))/n; 

,4))/n; 
tim=etime(clock,t)/60; 

'/, complete H2 until missing edges are added 

'/, maximum clique of S 
'/, reverse the ordering of S 
•/, color S using greedy coloring 

'/, chromatic number for S 

'/, record results 
•/, increment k 

'/, end if 
'/, end while 

•/, size of M 
'/, average actual chormatic number 
'/, average new chormatic number 

•/, average relative error 

'/, elapsed time 

fid=fopen('Results2/project3.1.out','a'); 

fprintf (fid,'Edge probability in Arbitrary Graph is:y,4. If \n',p); 

fprintf(fid,'Matrix    Chromatic Numbers\n'); 

fprintf(fid,' Size   Actual  New  Error\n'); 
fprintf(fid,"/.5.0f y.7.0f y.7.0f '/.7.4f \n',M'); 
fprintf (fid,'Average :'/,5. Of */.7.0f y,7.4f \n',aac,anc,adc); 

fclose(fid); 
fid=fopen('Results2/project3.out','a'); 
fprintf(fid,"/.5.0f '/.7.0f '/.7.0f °/.7.4f '/.8. If \n' ,i,aac,anc,adc,tim) ; 

fclose(fid); 
end; '/• end for 
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APPENDIX D. GRAPH COMPLETION 
FUNCTION 

function A=complete(A,el) 

'/, function A=complete(A,el) 

'/. 
'/, This function is a graph completion function for the thesis project. 
'/, Input a peo ordering v, a list of edges e from a maximal chordal subgraph, 
'/. and a list of edges el necessary to make a super-hypergraph of the original 

'/, graph. The output is a chordal supergraph. 

'/, by Loren G. Eggen, 14 April, 1997. 

A=A+speye(size(A)); 

[n,m]=size(A); 

v=l:n; 
p=sum(A); q=find(p~=n); 

v=(v(q)); 
while "isempty(el) 

k=length(v); 
l=max(find(~A(v(k),:))); 

if "isempty(l) 
ez=[v(k) 1]; 
e=[e; ez] ; 
A(v(k),l)=l; 
A(l,v(k))=l; 

end; 
if sum(A(v(k),:))==n 
h=find(v"=v(k)); 

v=v(h); 

end; 
[a,b]=size(el); 

for i=l:a 
if all(el(i,:)==ez I el(i,:)==fliplr(ez)) 

if a==l 

el=[]; 
break; 

else 
x=l:a; 
x=x(find(x~=i)) ; 

add loops 
# of vertices 
list of vertices 
eliminate and full 
vertices from list v 
loop for all missing edges 

vertix by peo ordering 
next highest missing edge 

test if found next 
edge to add ez 
add edge to list 
add edge in adjacency 

matrix 
end of if 
test if vertix full 
eliminate vertix from 
list of vertices 

end of if 
a = length of missing edges 

for each missing edge 
test ez in missing edges 

if yes and last then 

empty list of missing edges 

break for loop 
if not last 

set x 
find missing edge = ez 
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el=el(x\:); 
break; 

end; 
end; 

end; 

end; 
A=A-speye(size(A)); 

*/, delete edge from list 

'/, break for loop 
'/, end inner if 
'/, end outer if 

'/, end for loop 
'/, end of while 
'/. eliminate loops 
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APPENDIX E. CONNECTED GRAPH 
FUNCTION 

function [v,e]=connectl(A,i); 

function [v,e]=connectl(A,i); 

This function will find a connected component in-the input graph A and 
starting vertex i. It uses depth first search and outputs the vertices 

and edges of the connected component. 

%    By Loren G. Eggen, 30 May, 1997. 

v=i; 
v0=i; 
e=[]; 
n=length(A); 
while length(v) < n 

x=adj(A,i); 
if "isempty(x) 

t=0; 
for j=l:length(x) 

if isempty(find(x(j)==v)) 

v=[v,x(j)] ; 
e=[e; i,x(j)] ; 
A(i,x(j))=0; 
A(x(j),i)=0; 

i=x(j); 
t=l; 
break; 

end; 
end; 
if ~t 
for j=l:length(x) 

e=[e;i,x(j)]; 
A(i,x(j))=0; 
A(x(j),i)=0; 

end; 

1=1; 
while sum(A(i,:)) == 0 & i "= vO 

initialize list of vertices 

first vertex 
initialize list of deleted edges 

number of vertices 
loop till all vertices are added 
adj. vertices to current vertex 

if x is not empty 
test variable if vertex is added 
for all the adj. vertices 
find 1st one not in list v 
add it to the list v 
update deleted edges 
eliminate edge in adj. matrix 
eliminate edge in adj. matrix 
make new vertex current 
set test variable true 
break when new one found 

end of if 
end of for 
if no new vertex but x not empty 
for each adj. vertex which is on v 
update deleted edges 
eliminate edge in adj. matrix 
eliminate edge in adj. matrix 

end of for 
set backtracking index 
backtrack till edge is present 
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i=v(length(v)-l); 
1=1+1; 

end; 
end; 

elseif i == vO 
break; 

else 

1=1; 
while sum(A(i,:)) == 0 

i=v(length(v)-l); 

1=1+1; 
end; 

end; 
end; 

i "= vO 

'/, backtrack list v 
%  increment index 
%  end of while 
%  end of if 
'/,  if x was empty and we returned to vO 
'/, break while loop, output component 
'/, not at the start but x is empty 
'/, set backtracking index 
'/, backtrack till edge is present 

'/, backtrack list v 
'/, increment index 
'/, end of while 
'/, end of if 
•/, end of while 
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APPENDIX F. GREEDY-BACKTRACKING 
COLORING FUNCTION 

function [vc]=gbcolor(A,m) 

'/. 

'/. 

'/. 

7, 
I 
7. 
7. 

function [vc]=gbcolor(A,m) 

This function uses the greedy-backtracking approach to 
color the vertices of a graph so that no two colors are 
together. Input the adjacency matrix of the graph and a 
minimum number of colors. Output vc is the vector of vertix 

colors. 

'/, by Loren G. Eggen, 18 March, 1997. 

i=l; 
v=i; 
vc=i; 
n=length(A); 
while length(vc) < n; 

k=l; 
i=i+l; 
v= [v i] ; 
x=adj(A(v,v),i); 
xc=sort(vc(x)); 
for j=l:length(xc) 

if xc(j) == k 
k=k+l; 

end; 
end; 
if k > m 

i=i-l; 
v=v(l:i); 
vc=vc(l:i); 
while length(v) > 1 

t=0; 
while vc(i) < m 

vc(i)=vc(i)+l; 
if ~any(vc(i) -- 

t=l; break; 
end; 

starting index 
first vertex 
first vertex color 
number of vertices 
used until all vertices have been colored 

first color 
increment index 
vector of vertices visited 
adjacent visited vertices of index 

sorted colors 
find the next available color 
if current color used 
increment color 
end if 
end for 
if we run out of colors backtrack 

decrement index 
go back one vertix 
eliminate last color if necessary 
do not backtrack past 1 
test variable to break backtrack 
if the color is < max see if we can 

increase the color 
vc(adj(A(v,v),i)))   '/. test if the color has been 

'/, used if not use it and stop 

'/. end if 
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end; 
if t == 1 

break; 
end; 

i=i-l; 
v=v(l:i); 
vc=vc(l:i); 

end; 
end; 
if length(vc) < length(v) 

vc=[vc k]; 

end; 
if length(v) == 1 & t == 0 

m=m+l; 
end; 

end; 

'/, end while k < m 
'/, found one that could be incremented 

*/, break outer loop 
7,  end if 
% decrement index 
'/,  go back one vertix 
y, eliminate last color if necessary 

•/, end while v > 1 
'/, end if k > m 
'/, if the inner loop did not 
•/, update the color 

'/, end if 
y, if we have ran out of colors and 
'/, backtracked to the origin increase 

'/, the available colors 

•/, end while vc < n 
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APPENDIX G. GREEDY COLORING 
FUNCTION 

function  [vc]=grcolor(A,m) 

•/. 
7. 
7, 
7. 
7. 
7. 

function  [vc]=grcolor(A,m) 

This function uses the greedy approach to color the vertices of a graph 
so that no two colors are together. Input the adjacency matrix of the graph 
and a maximum number of colors. Output vc is the vector of vertix colors. 
Optimal coloring if the input graph is chordal and reverse order perfect 

elimination scheme. 

'/, by Loren G. Eggen, 23 April, 1997. 

n=length(A); 
k=l 
i=l 
v=i 
vc=k; 
while length(v) < n; 

k=l; 
i=i+l; 
v=[v i] ; 
x=adj(A(v,v),i) ; 
xc=sort(vc(x)); 
for j=l:length(xc) 

if xc(j) == k 
k=k+l; 

end; 
end; 

vc=[vc k]; 
if max(vc) > m 
fprintf('colors used greater than 

end; 
end; 

used until all vertices have been visited 

first color 
increment index 
vector of vertices visited 
adjacent visited vertices of index 

sorted colors 
find the next available color 

if color used 
incremet color 

end if 
end for 
update the color 
if we have ran out of colors 

colors given\n\n'); 
end if 
end while 
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APPENDIX H. MAXIMAL CHORDAL 
SUBGRAPH FUNCTION 

function [v, E] = mchord(A,i) 

'/, function [v, E] = mchord(A,i) 

'/, Returns the peo ordering of vertices and a set of edges 
•/, which will generate a maximal chordal subgraph. Adjacency 
'/, matrix A should represent a connected undirected graph. 

*/, This function uses algorithm MAXCHORD, P.M. Dearing. 

•/, by Loren G. Eggen, 6 February, 1997 

'/, adj .m function called 

'/, begin mchord 

v=i; 

n=length(A); 
s=l:n; 
s=s(find(s~=i)); 
C=zeros(n); 
C=sparse(C); 

E=[]; 
for j=l:n-l 

[vl el]»adj(A,i); 
for k=l:length(vl) 

test = C(vl(k),:) I C(i,:); 
if test == C(i,:) 
C(vl(k),i)=l; 
E=[E;ivl(k)]; 
A(i,vl(k))=0; 
A(vl(k),i)=0; 

end; 
end; 

[1 m]=max(sum(C(s,:)')); 
v=[v s(m)] ; 
i=s(m); 
s=s(find(s~=i)); 

starting vertex v 
number of vertices 
list of vertices 
delete first vertex from the list 
initialize the set of adj. vertices 

make matrix sparse 
initialize set of edges 
loop through all vertices except 1st 
find adj. vertices to current 
loop through each adj. vertex u 
is set C(u) subset of C(v) 

if so then 
update C(u) 
update set of edges 
delete edge from adjacency matrix 

both edges 
end of if 
end of inner for 
find next vertex with largest card, in C 
assign new vertex to reverse peo ordering 
assign new vertex to current vertex v 
delete v from list of vertices 
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end; '/• en<3 of outer for 
v=fliplr(v); '/. peo ordering 

'/, end of mchord 
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APPENDIX I. MAXIMUM CLIQUE 
FUNCTION 

function c=mclique(H) 

'/, function c=mclique(H) 

V. 
'/, This function calculates the maximum clique number of a triangulated 

'/, graph H, which is ordered by it perfect elimination scheme. 

'/. 

'/, by Loren G. Eggen, 21 April, 1997 

'/,  calls adj.in function 

c=l; 
[n,m]=size(H); 
S=zeros(l,n); 

a=l:n; 
for i=l:n 

X=[]; 
v=a(i); 
[x,e]=adj(H,v); 
for j=l:length(x) 

if find(v==a) < find(x(j)==a); 

X=[X x(j)]; 
end; 

end; 
if isempty(x), v; end; 
if "isempty(X) 
u=min(X); 
S(u)=max(S(u),length(X)-l); 

if S(v) < length(X) 
[v X]; 
c=max(c,l+length(X)); 

end; 

end; 
end; 

initial clique number 
order of input graph 
list, # if times vertices l:n visited 

vertices l:n 
loop for each vertex 

initialize X 
assign v current vertec 
find adj. vertices to v 
loop for each adj. vertex 
if index of v < index of adj. vertices add 
adj. vertex to the list of higher indices 

end if 
end innner for 
if no adj. vertices v is cluque 
if X not empty 
u, smallest index in X 
assign S(u) max. of current value or clique 

if S(v) < current clique 
print current clique 
update maximum clique number 

end inner if 

end outer if 
end for loop 
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APPENDIX J. MAXIMUM CARDINALITY 
SEARCH 

function  [v]  = mcs(A,i) 

'/, function  [v]   = mcs(A,i) 
y. 
'/, Returns a vector of vertices which indicate 
'/, a possible perfect elimination scheme. Adjacency 
% matrix A should represent a connected undirected 
y, graph. This function uses Maximum Cardinality Search. 

•/. by Loren G. Eggen, revised 29 January, 1997 

'/, adj .m function called 

'/, begin mcs 

v=i; 

n=length(A); 
x=ones(l,n); 
for j=l:n-l 

vl=adj(A,i); 
x(vl)=x(vl)+l; 
[k,l]=max(x) ; 

v=[v 1]; 
x(v)=x(v)-x(v); 
A(i,l)=0; 
A(l,i)=0; 
i=l; 

end; 
v=fliplr(v); 

'/, 1st vertex in the peo 

'/, number of vertices 
*/, initialize cardinality vector x 
'/, loop for each vertex 
•/, find adj . vertices vl to current vertex 
'/, update the cardinality of vertices in vl 
'/, find the vertex in x with max. cardinality 

'/, add new vertex to the peo list v 
'/, zero the entries of x for vertices in v 
•/, eliminate edges from adj . matrix 
'/, eliminate edges from adj . matrix 
'/, assign current vertex to the last vertex added 

'/, end for loop 
*/, reverse peo ordering 

'/, end of mcs 

49 



50 



APPENDIX K. MISCELLANEOUS 
FUNCTIONS 

function [v, e] = adj(A,i) 

'/, function [v, e] = adj(A,i) 

7. 
'/, Returns a vector of adjacent vertices and a list of 
'/, edges to the vertex i from the adjacency matrix A. 

7. 

•/, by Loren G. Eggen, 29 January, 1997 

'/, no intrinsic functions called 

*/, begin adj 

v=[]; 
e=[]; 
for j=l:length(A) 

if A(i,j) 
v=[v j] ; 
e=[e;i j]; 

end; 
end; 

y, end of adj 

'/, initialize v 
'/, initialize e 
•/, for each element in row i 

'/, if an edge exist 
•/, update v, list of adjancect vertices 
'/, update e, list of associated edges 

•/, end if 
y, end for 

function A=mkadjmat(e,v) 

*/, function A=mkadjmat(e,v) 

y, Input a set of edges containing the numeric vertices e.g. 
•/, e=[l 2;1 7;2 3;2 5;3 4;4 6;5 6;6 7] and maximum vertices v. 
'/, Output an adjacency matrix of unidirectional graph. 

y. 

y, by Loren G. Eggen, revised 3 May, 1997 

A=zeros(v,v); 
[n,m]=size(e); 
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for i=l:n 
A(e(i,l),e(i,2))=l; 
A(e(i,2),e(i,l))=l; 

end; 
A=sparse(A); 

function e=mkedges(A) 

'/. function e=mkedges(A) 

'/, This function makes a set of edges from the given 

'/, adjancency matrix. 

'/, by Loren G. Eggen, 11 April, 97 

A=triu(A); 
for i=l:length(A) 

y=find(A(i,:)); 
e=[e;i*ones(length(y),l),y]; 

end; 

function el=trans(v,e) 

'/, function el=trans(v,e) 

y. 
'/, This function translates the edges into the new vertix ordering. 

•/. by Loren G. Eggen, 14 April, 1997. 

[n,m]=size(e); 

for i=l:n 
el(i,l)=find(e(i,l)==v); '/. translate the missing edges 
el(i,2)=find(e(i,2)==v); '/. into the new ordering 

end; 

function  [A]  = unigrapl(n.p) 

y.    function [A]  = unigrapl(n.p) 
y. 
•/, Generates an edge with probability p in an adjacency 

y, matrix for a unidirected graph. 
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•/, by Loren G. Eggen, revised 29 May, 1997 

'/, no intrinsic functions called 

'/, begin 

A=rand(n); 
A=A(:,:)<p; 
A=A-diag(diag(A)) ; 

A=triu(A); 
A=A+A'; 
A=sparse(A); 

*/. end 

function [S,v]=versort(A); 

*/, function [S,v]=versort(A) ; 

7. 
'/, Label an adjacency matrix sorting by highest degree 

'/, vertix in the matrix. 

i=sum(A); 
[y,j]=sort(i); 
v=fliplr(j); 

S=A(v,v); 

'/,  generate random 0-1 matrix nxn 
'/, eliminate all entries > p 

•/, eliminate diaganol 
'/, eliminate lower triangular 

'/, make symetric 
'/, make matrix sparse storage 
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